Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

The Development status of Generation IV reactor systems, 1; Overview

Sagayama, Yutaka; Ando, Masato

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 60(3), p.162 - 167, 2018/03

The Generation IV international Forum (GIF) has led international collaborative efforts to develop six next generation nuclear energy systems, such as Sodium-cooled Fast Reactor (SFR), Lead-cooled Fast Reactor (LFR), Gas-cooled Fast Reactor (GFR), Molten Salt Reactor (MSR), Supercritical Water-cooled Reactor (SCWR), and Very High Temperature Reactor (VHTR), which have superior characteristics for the Safety and Reliability, Economics, Sustainability, Proliferation Resistance and Physical Protection. Some systems are already in the Demonstration Phase and the commercialization of the system in 2030s, which is the target of GIF, comes into sight.

JAEA Reports

None

Funasaka, Hideyuki; ;

JNC TN1200 2001-002, 209 Pages, 2001/01

JNC-TN1200-2001-002.pdf:7.84MB

no abstracts in English

JAEA Reports

Decay heat removal analyses on the heavy liquid metal cooled fast breeding reactor; Comparisons of the decay heat removal characteristics on Lead, Lead-Bismuth and Sodium cooled reactors

Sakai, Takaaki; *; Ohshima, Hiroyuki; Yamaguchi, Akira

JNC TN9400 2000-033, 94 Pages, 2000/04

JNC-TN9400-2000-033.pdf:4.36MB

The feasibility study on several concepts for the commercial fast breeder reactor(FBR) in future has been conducted in JNC for the kinds of possible coolants and fuel types to confirm the direction of the FBR developments in Japan. ln this report, Lead and Lead-Bismuth eutectic coolants were estimated for the decay heat removal characteristics by the comparison with sodium coolant that has excellent features for the heat transfer and heat transport performance. Heavy liquid metal coolants, such as Lead and Lead-Bismuth, have desirable chemical inertness for water and atmosphere. Therefore, there are many economical plant proposals without an intermediate heat transport system that prevents the direct effect on a reactor core by the chemical reaction between water and the liquid metal coolant at the hypocritical tube fairer accidents in a steam generator. ln this study, transient analyses on the thermal-hydraulics have been performed for the decay heat removal events in "Equivalent plant" with the Lead, Lead-Bismuth and Sodium coolant by using Super-COPD code. And a resulted optimized lead cooled plant in feasibility study was also analyzed for the comparison. ln conclusion, it is become clear that the natural circulation performance, that has an important roll in passive safety characteristic of the reactor, is more excellent in heavy liquid metals than sodium coolant during the decay heat removal transients. However, we need to conform the heat transfer reduction by the oxidize film or the corrosion products expected to appear on the heat transfer surface in the Lead and Lead-Bismuth circumstance.

JAEA Reports

MA transmutation in various fast reactor core concepts

Oki, Shigeo; Iwai, Takehiko*; Jin, Tomoyuki*

JNC TN9400 2000-080, 532 Pages, 2000/03

JNC-TN9400-2000-080.pdf:14.98MB

Transmutation Property of minor actinide nuclides (MA) was analyzed for fast reactor cores having different coolant and fuel types in order to obtain basic data for evaluating an ability of the efficient use of resource and reducing the effect on the environment. The investigated fast reactor cores were (a) sodium cooled and oxide fueled core, (b) lead cooled and nitride fueled core (BREST-300), (c) carbon dioxide gas cooled and oxide fueled core (ETGBR), (d)lead cooled and oxide fueled core, (e) sodium cooled and nitride fueled core (both He-bond and sodium-bond), and (f) sodium cooled and metallic fueled core. Followings were observed for the relation between MA transmutation property and the different types of coolant and fuel of fast reactor core. (1) For the MA transmutation rate, the relation "Oxide $$<$$ Metal $$<$$ Nitride" was found out for difference of fuel type. A main reason of the increment of MA transmutation rate is that the neutron flux level rises on nitride and metallic fueled cores in comparison with oxide core. (2) The relation "Lead $$<$$ Sodium and Carbon dioxide" can be seen for the MA transmutation rate in the difference of coolant, but it is not clear whether the cause is driven from the difference of coolant itself on the difference of core design. (3) The changes of MA transmutation property mentioned above are comparatively small.

JAEA Reports

lnvestigation for corrosion behavior of core materials in lead cooled reactor

Kaito, Takeji

JNC TN9400 2000-039, 19 Pages, 2000/03

JNC-TN9400-2000-039.pdf:0.66MB

The corrosion behavior of core materials in lead cooled reactor was investigated as the feasibility study for fast breeder reactor. The results are summarized as follows. (1)The corrosion of stainless steels under lead and lithium occurs mainly due to the dissolution of nickel. Consequently ferritic stainless steels have better resistance to corrosion under lead and lithium than austenitic stainless steels, and the corrosion resistance of high nickel steels is worst. (2)The dissolution rate, D(mg/m$$^{2}$$/h), is correlated with lead and lithium temperature, T(K), as log$$_{10}$$ Da = 10.7873 - 6459.3/ T and log$$_{10}$$Df = 7.6185 - 4848.4/T, where D a is the dissolution rate for austenitic steels and D f is for ferritic steels. lt's possible to calculate the corrosion thickness, C($$mu$$m), using the following correlation: C = (D$$times$$t)/$$rho$$$$times$$10$$^{-3}$$, where t is exposure time(hr) and $$rho$$ is density of the core matelial (g/cm$$^{3}$$). (3)The corrosion thickness estimated for austenitic steels using above correlations was extremely larger than ferritic steels, about 6 times at 400$$^{circ}$$C and more than 20 times at above 600$$^{circ}$$C. lt's considered that applicable temperature in lead cooled reactor core is below 400$$^{circ}$$C (about 60$$mu$$m corrosion thickness after 30000 hr) for austenitic steels, and below 500$$^{circ}$$C (about 80 $$mu$$m after 30000 hr) for ferritic steels.

JAEA Reports

Comparative study for minor actinide transmutation in various fast reactor core concepts (1)

Oki, Shigeo

JNC TN9400 2000-007, 77 Pages, 1999/12

JNC-TN9400-2000-007.pdf:2.17MB

Comparative study for various core concepts is being carried out in a frame work of the study for minor actinide (MA) transmutation using a fast reactor. Different fuel types (Oxide, Nitride, Metal) and coolants (Sodium, Lead) were investigated. It is found that neither nitride nor metal-fueled core has significantly more excellent efficiency for MA transmutation comparing with an oxide-fueled core when the basic performance of these cores as a power reactor are fixed. The MA transmutation Properties of lead-cooled fast reaetor (BREST-300) and sodium-cooled fast reactor (3800MWth large core) were compared. The sodium-cooled reactor surpasses BREST-300 on the MA transmutation rate. Meanwhile, it is found that BREST-300 is excellent from the viewpoint of loading much more MA in the core to attain larger MA transmutation amount. The effect of MA to coolant void reactivity is considered by the sensitivity analysis. It is found that the lead void reactivity has different sensible energy regions on MA nuclides from those for the sodium void reactivity.

JAEA Reports

Parameter analysis calculation on characteristics of portable FAST reactor

PNC TN9410 98-059, 53 Pages, 1998/06

PNC-TN9410-98-059.pdf:1.23MB

The analysis program code STEDFAST; Space, TErrestrial and Deep sea FAST reactor ・gas turbine system; had been developed in PNC to get the best values of system parameters on fast reactor ・gas turbine power generation systems used as power sources for deep sea, space and terrestrial cogeneration. In this report, we performed a parameter survey analysis by using the code to study characteristics of the systems. Concerning the deep sea fast reactor ・gas turbine system, calculations with many variable parameters were performed on the base case of a NaK cooled reactor of 40kWe. We aimed at total equipment weight and surface area necessary to remove heat from the system as important values of the characteristics of the system Electric generation power and the material of a pressure hull were specially influential for the weight. The electric generation power, reactor outlet/inlet temperatures, a natural convection heat transfer coefficient of sea water were specially influential for the area. Concerning the space reactor ・gas turbine system, the calculations with the variable parameters of compressor inlet temperature, reactor outlet/inlet temperatures and turbine inlet pressure were perfomed on the base case of a Na cooled reactor of 40kWe. The first and the second variable parameters were influential for the total equipment weight of the important characteristic of the system. Concening the terrestrial fast reactor ・gas tubine system, the calculations with the variable parameters of heat transferred pipe number in a heat exchanger to produce hot water of 100 $$^{circ}$$C for cogeneration, compressor stage number and the kind of primary coolant material were performed on the base case of a Pb cooled reactor of 100MWt. In the comparison of calculational results for Pb and Na of primary coolant material, The primary coolant weight flow rate was naturally large for the fomer case compared with for the latter case because density is very different between them. ...

Journal Articles

Minor actinide burner reactor and influence of transmutation on fuel cycle facilities

Mukaiyama, Takehiko; Ogawa, Toru; *

IAEA-TECDOC-783, 0, p.105 - 114, 1995/01

no abstracts in English

Journal Articles

A Design study for inherent safety core, aseismicity and heat transport system in lead-cooled nitride-fuel fast reactor

Takano, Hideki; ; ; *; *; *

Proc. of ARS94 Int. Topical Meeting on Advanced Reactors Safety,Vol. 1, 0, p.549 - 556, 1994/00

no abstracts in English

Journal Articles

Analysis of critical experiment BFS-61 by using the continuous energy Monte Carlo code MVP and the JENDL-3.1 nuclear data

; Takano, Hideki; ; A.G.Morozov*; V.S.Smirnov*; V.V.Orlov*

Proc. of ARS94 Int. Topical Meeting on Advanced Reactors Safety,Vol. 1, 0, p.544 - 548, 1994/00

no abstracts in English

Journal Articles

A Concept of self-completed fuel cycle based on lead-cooled nitride-fuel fast reactors

Takano, Hideki; ; Handa, Nuneo; ; *; *; *; *; *; *

Proc. of the 7th Int. Conf. on Emerging Nuclear Energy Systems; ICENES 93, 8 Pages, 1993/00

no abstracts in English

11 (Records 1-11 displayed on this page)
  • 1